Fabrication of Thermoelectric Field-Effect Transistors Using Few-Layer MoS₂ for Exploration of Optimum Thermopower

Kuan-Cheng Lu¹⁾, Chetan Awasthi¹⁾, Ta-Wei Chiu¹⁾, *Wen-Bin Jian²⁾

1), 2) Department of Electrophysics, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 300093, Taiwan

2) wbjian@nycu.edu.tw

ABSTRACT

High-efficiency MoS₂ field-effect transistor devices will be facing huge waste heat. Thus, studying the material properties over a wide temperature range and utilizing superior thermopower for energy harvesting is inevitable. The electrical and thermoelectric properties of MoS₂ flakes across a wide thickness range from 1 to 39 layers over a broad temperature range are extensively explored. At 600 K, the maximum thermoelectric power factor of ~10 mW/m K² is achievable for MoS₂ with thicknesses of 1-5 layers, and the maximum Seebeck coefficient of ~1 mV/K is reachable for MoS₂ with thicknesses of 15-20 layers. The carrier concentration behavior of the Seebeck coefficient is analyzed and fitted to obtain the k_B/e of -9.09×10^{-5} V/K, within 5% error close to the ideal value of -8.62×10^{-5} V/K, and the effective electron mass of 0.733 m_0 for monolayer MoS₂. Here, the simplest method for measuring the effective mass of carriers in the 2D semiconductor channel has been discovered. Notably, the release of trapped charges from the SiO₂ dielectric above 450 K is probed, which significantly modulates electrical and thermoelectric properties of the 2D MoS₂ channel.

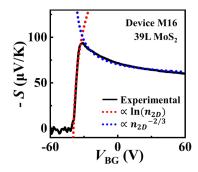


Fig. 1 Seebeck coefficient as a function of back-gating voltage.

REFERENCES

Tu, H. W. et al., (2021), "High Field-Effect Performance and Intrinsic Scattering in The Two-Dimensional MoS2 Semiconductors", *Appl. Surf. Sci.* **564**, 150422.